
J. Fluid Mech. (2008), vol. 612, pp. 107–141. c© 2008 Cambridge University Press

doi:10.1017/S0022112008002978 Printed in the United Kingdom

107

Low-dimensional characteristics of a transonic
jet. Part 1. Proper orthogonal decomposition

C. E. T I N N E Y1, M. N. G L A U S E R2 AND L. S. U K E I L E Y3

1Department of Aerospace Engineering & Engineering Mechanics, University of Texas at Austin,
Austin, TX 78712, USA

2Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse,
NY 13244, USA

3Department of Mechanical & Aerospace Engineering, University of Florida,
Shalimar, FL 32579, USA

(Received 14 November 2006 and in revised form 4 June 2008)

An experimental investigation concerning the most energetic turbulent features
of the flow exiting from an axisymmetric converging nozzle at Mach 0.85 and
ambient temperature is discussed using planar optical measurement techniques. The
arrangement of the particle image velocimetry (PIV) system allows for all three
components of the velocity field to be captured along the (r, θ)-plane of the jet at
discrete streamwise locations between x/D = 3.0 and 8.0 in 0.25 diameter increments.
The ensemble-averaged (time-suppressed) two-point full Reynolds stress matrix is
constructed from which the integral eigenvalue problem of the proper orthogonal
decomposition (POD) is applied using both scalar and vector forms of the technique.
A grid sensitivity study indicates that the POD eigenvalues converge safely to within
1 % of their expected value when the discretization of the spatial grid is less than 30 %
of the integral length scale or 10 % of the shear-layer width. The first POD eigenvalue
from the scalar decomposition of the streamwise component is shown to agree with
previous investigations for a range of Reynolds numbers and Mach numbers with a
peak in azimuthal mode 5 at x/D = 3.0, and a gradual shift to azimuthal mode 2
by x/D = 8.0. The eigenvalues from the scalar POD of the radial and azimuthal
components are shown to be much lower-dimensional with most of their energy
residing in the first few azimuthal modes, that is modes 0, 1 and 2, with little change
in the relative energies along the streamwise direction. From the vector decomposition,
the azimuthal eigenspectra of the first two POD modes shift from a peak in azimuthal
mode 5 at x/D = 3.0, followed by a gradual decay to azimuthal mode 2 at x/D = 8.0,
the differences in the peak energies being very subtle. The conclusion from these find-
ings is that when the Mach number is subsonic and the Reynolds number sufficiently
large, the structure of the turbulent jet behaves independently of these factors.

1. Introduction
Large-scale turbulent structures have been known for some time now to govern

a moderate to large percentage of the overall turbulent kinetic energy in most flows
(Townsend 1956; Brown & Roshko 1974; Winant & Browand 1974). Trying to
capture the spatial and temporal evolution of these structures has become paramount
to understanding the process by which heat, mass and momentum are transferred
through the mean flow and has become the subject of numerous investigations,
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expressly to those concerning thermal and fluid flow type phenomena. In particular,
the importance of these large-scale structures to the production of noise in high
subsonic and even supersonic jet flows remains an important and timely topic of
scientific and engineering interest.

In general, jet noise is created by the turbulent mixing of a high-speed (high-
temperature) jet exhaust plume with the ambient air, thus creating massive pressure
fluctuations in the near-field and ultimately large acoustic signatures in the far-field
regions of the flow. The broad range of frequencies associated with the entire process
comprises high frequencies at the jet exit (because of the relatively ‘small-scale’
turbulent structures in the flow at this location†) and lower frequencies emanating
around a region after the close of the potential core (larger-scale events). The sound
intensity is known to be directional owing to the competing effects of convection and
refraction of the sources in the jet shear layer (Ribner 1969), with the greatest levels
radiating at shallow angles to the jet axis (typically around 30◦). Since most of the
turbulent kinetic energy of the flow is governed by the large-scale structures, it is
advantageous for us to extract these underlying events from the chaotic turbulence,
because of the importance of these events to the sound-generation process (e.g.
Michalke & Fuchs 1975; Ffowcs Williams & Kempton 1978; Juve, Sunyach &
Comte-Bellot 1980; Bastin, Lafon & Candel 1997; Seiner 1998; Tam 1998; Freund
2001).

A number of techniques have been proposed for extracting, or separating ‘large-
scale’ structures from the background turbulence (see Bonnet et al. 1998, for
a comparison of different coherent structure eduction methods). In the current
investigation, the methods adopted are based on Lumley’s (1967) proper orthogonal
decomposition (POD) since it is well suited for inhomogeneous systems. While the
POD does not necessarily select physical structures, it does re-project data onto a basis
set that has been optimized with respect to the Reynolds stress characteristics of the
turbulence. Therefore, with many applications of the POD technique to transitional
and turbulent flows, (e.g. Glauser 1987; Moin & Moser 1989; Delville et al. 1999;
Citriniti & George 2000; Caraballo et al. 2003; Noack, Papas & Monkewitz 2005;
Tinney et al. 2006b), care must be taken when interpreting POD modes with regard to
physical structures. For details of the POD’s mathematical construction, its historical
applications to turbulent flows, as well its relation to other modelling techniques,
i.e. Galerkin projection, linear stochastic estimation, pattern recognition and others,
see Berkooz, Holmes & Lumley (1993).

The application of the POD to the axisymmetric shear layer was first documented
by the seminal work of Glauser (1987) and Glauser & George (1987) who showed
that the dominant basis function (first POD mode) contained 40 % of the resolved
turbulent kinetic energy, with an additional 40 % of the energy found in the next
two modes combined. Glauser (1987) postulated a ‘model’ for the most energetic flow
events in the jet that invoked a streamwise interaction between two axisymmetric
vortices, and followed their evolution to explain the higher azimuthal structure,
guided by measurements in the radial and azimuthal plane of the jet. An extension
to this work was later performed by Citriniti & George (2000) to show the life cycle
of the large-scale dynamics near the end of the potential core, the most prominent
being a ‘volcano-like’ bursting event that ejected high streamwise momentum fluid

† The structures that comprise the production region of the energy spectrum near the nozzle
exit are considered small in relation to the events downstream, but are locally large-scale turbulent
events.
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through the core, thus inducing a high-strain series of counter-rotating vortex pairs.
The investigation of Citriniti & George (2000) used the POD to filter out small-scale
fluctuations capable of obscuring the interpretation of the interactions between the
more energetic events in the turbulent shear layer. In doing so, 67 % of the resolvable
flow field’s energy was captured with the first POD mode alone.

Ukeiley, Seiner & Ponton (1999) and Taylor, Ukeiley & Glauser (2001) performed
similar studies using CTA tools in the (r, θ)-plane of a Mach 0.3 and 0.6 jet, thus
characterizing (for the first time) the streamwise evolution of the most energetic
Fourier-azimuthal modes in the compressible jet’s shear layer and its dynamical
characteristics from a linear stochastic estimation (LSE) procedure. Likewise the first
POD mode contained 40 % of the mean square mass-flux and the distribution of the
azimuthal modal energy evolved from a broad spectral distribution of modal energy
at x/D = 4, to a much narrower peak in the lower modes 1,2 and 3 at x/D = 8.
Further measurements were conducted at Mach 0.85, although because of high probe
breakage, the decomposition technique could not be applied to the higher Mach
number flow. Comparisons were made, and similarities were found in the spectral
measurements at all Mach numbers (0.30, 0.60 and 0.85), suggesting similarity in
the POD solution for all of the conditions studied. Succeeding the compressible
jet studies, Jung, Gamard & George (2004) and Gamard, Jung & George (2004)
demonstrated a similar modal evolution in the incompressible jet, thus fortifying
the results between the incompressible and compressible jet flows under a range of
Mach numbers and Reynolds numbers and the lack of Reynolds-number dependence
on the energy distribution of the first POD mode. The latter of these two studies
demonstrated how the fluctuating streamwise velocity stabilized asymptotically to
Fourier-azimuthal mode 2 in the jet’s far-field regions.

The results and discussion presented here build on the original benchmark studies
of Ukeiley, Seiner & Ponton (1999) for the Mach 0.85 compressible shear layer in
order to develop a framework for characterizing the low-dimensional features of the
turbulent axisymmetric jet as it pertains to acoustic sources of noise. There have
been a number of experimental studies of the high subsonic-Mach-number jet using
a variety of instruments and jet exit conditions (Morris 1976; Lau, Morris & Fisher
1979; Stromberg, McLaughlin & Trout 1980; Narayanan, Barber & Polak 2002;
Arakeri et al. 2003; Bridges 2006; Alkislar, Krothapalli & Butler 2007; Iqbal &
Thomas 2007), which have been used to guide the current experiments and provide
some confidence in the data presented here for discussion. The results that are obtained
from this analysis are used in a subsequent discussion (Part 2, Tinney, Ukeiley &
Glauser 2008) whereby a low-dimensional model estimate of the most energetic
flow events is constructed, from which an analogy with the far-field acoustics is
invoked.

The outline of this paper is as follows. A description of the experiment and of the jet
exit conditions will be presented in § 2, including an analysis aimed at quantifying the
accuracy of the measurements, as well as potential sources of error. In § 3, the spatial
evolution of the Fourier-azimuthal modes of the Mach 0.85 axisymmetric jet will be
presented followed by an optimization of the radial distribution of the Fourier-modes
using proper orthogonal decomposition in § 4. The POD is applied using both scalar
and vector forms of the technique, from which the results are compared with what
is available in the literature. This is performed to improve our confidence with the
measurements reported here under more difficult flow conditions. A low-dimensional
reconstruction of the frozen jet structure is performed in § 5 using only the most
energetic flow features, followed by a summary in § 6.
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2. Experimental description
2.1. Facility

The measurements reported here were acquired at Syracuse University’s fully anechoic
chamber (206 m3) located on the Skytop campus. Specific details regarding the design
and construction of the facility can be found in Dosanjh, Bhutiani & Ahuja (1977)
and Tinney et al. (2004), whereas only the highlights will be presented here. The
facility is designed as a blow-down system whereby a two-stage compressor supplies
dry compressed air (−40 ◦C dewpoint) to five large storage tanks (32 m3 total). A
pneumatically actuated valve (via Programmable Logic Control [PLC]) regulates the
airflow through the piping system to the jet rig located in the chamber. The jet rig
comprises a converging nozzle with an exit diameter of D = 50.8 mm. Input to the
PLC comprises a Pressure Systems 0.05 % of full scale (FS), 0–25 p.s.i.g. transducer
(for sampling the static pressure before the nozzle contraction) and a Transmetrics
26–32 in Hg, 2.5 %FS barometric transducer (for sampling the absolute pressure in
the chamber, Pb). The set point for the exit Mach number is monitored using the
isentropic, compressible flow relation,

M =

[
2

γ − 1

{(
GpPs + Pb

Pb

)
γ − 1/γ − 1

}]1/2

, (2.1)

where a coefficient (Gp = Po/Ps) has been inserted in place of the pipe’s total pressure
based on a priori calibration of the jet’s total pressure (Po) from the static pressure
(Ps). Derivation of the uncertainty propagation equation yields a flow uncertainty
(εM ) to within 0.12 % at Mach 0.85 (see Tinney et al. 2004).

The air system is designed to operate at a steady jet exit speed of Mach 0.85 for
approximately 20 min. The facility is equipped with an electric circulation heater,
capable of elevating the jet exit temperatures up to 810 ◦K at Mach 0.85. The
measurements presented here will comprise an unheated jet with a centreline exit
velocity Uj corresponding to a nominal Mach number of 0.85 (ReD = 1 × 106), exiting
into an environment with ambient temperatures around 283 ◦K.

2.2. Instrumentation

The primary instrument employed in this investigation for analysis of the jet’s mean
and turbulent statistics comprised a Dantec Dynamics stereo (three-component)
particle image velocimetry (PIV) system. The system’s characteristics included two
HiSense 12-bit resolution CCD cameras (1280 × 1024 pixels) as well as a New Wave
Research 200 mJ Nd:YAG dual head laser (Gemini-PIV) for generating the optical
laser sheet (λL = 532 nm). Both cameras comprised square pixels with a lineal
dimension of 6.7 μm, 28 mm f/2.8D AF Nikkor (f # = 2.8) lenses and were oriented
at 45◦ to the illumination plane of the laser. The positioning of the PIV system
(figure 1) allowed for surveys of the jet’s (r, θ)-plane at discrete streamwise locations
between x/D = 3.0 and 8.0 (�x/D = 0.25).

The entire system was mounted on a traverse that provided precise controlled
movements (±6.25 μm) of the PIV system without multiple calibrations. At each
streamwise position, 1250 image pairs were acquired at a rate of 4 Hz. An estimate
of the characteristic time scale of the flow (Tennekes & Lumley 1972) using
Tt ∼ D/Uj was found to be 1.814 × 10−4 s, suggesting that successive image pairs
were statistically independent realizations of the flow. The laser-sheet thickness was
5 mm and the �t between images, from which the vector maps were calculated,
was 4 μs. A Gaussian window was used for calculating the vector maps in order
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Figure 1. (a) Experimental arrangement and (b) coordinate system.

to reduce phantom correlations while a parabolic sub-pixel interpolation scheme
improved the centre of the peak correlation. Since window offsets have been
shown by Westerweel, Dabiri & Gharib (1997) to improve the accuracy of the
displacement cross-correlation peak, the cross-correlation analysis was performed
using the adaptive correlation techniques from Dantec Dynamics’ FlowManager
software (v3.3) (http://www.dantecdynamics.com) whereby the final interrogation
area (16×16 pixels) resulted from three refinement steps that were first initiated using
a larger 32 × 32 pixel interrogation area. This final interrogation area was chosen
to improve the signal-to-noise ratio since high gradient flows are known to increase
the level of noise relative to the peak signal. Vector maps were generated using a
50 % overlap yielding a Cartesian grid density (after masking to 552 × 840 pixels)
of 69(y) by 101(z) with Cartesian grid spacings of �y = 2.56 mm (5.0 × 10−2D) and
�z = 1.68 mm (3.3 × 10−2D). The small percentage of outlier vectors were replaced
by the FlowManager software, and were found mostly in the outer regions of the
PIV window. Specific details regarding the transformation of image pairs to vector
maps are described in Tinney (2005) following the discussions of Willert & Gharib
(1991), Keane & Adrian (1992) and Raffel, Willert & Kompenhans (1998).

Additional instruments used to quantify the jet’s characteristics included a Pitot
tube, and a Dantec Dynamics laser doppler anemometer (LDA). The Pitot tube
comprised a separate Pressure Systems 0.05 %FS accurate, 0–25 p.s.i.g. transducer
and a barometric transducer (shared by the PLC) for sampling the total and ambient
pressures, respectively. The LDA system employed a 3 W argon ion laser head,
and measurements were performed using backward scattering. Seeder pressure was
adjusted to achieve LDA sampling rates of the order of 25 kHz. Processing of the
LDA data is described in Hall, Glauser & Tinney (2005) and employed a zero-
order substitution algorithm discussed by Adrian & Yao (1986). The notation that
has been adopted for discussion follows standard literature where the instantaneous
field comprises both mean and turbulence quantities, that is, ũi = Ui + ui and the
subscripts i = 1, 2, 3 refer to axial u, radial v and azimuthal w components of velocity,
respectively.

2.3. Seeding and tracking errors

Seeding for the primary jet was provided by a PIVTEC twelve Laskin nozzle seeder,
whereas the co-flow region (necessary for the entrainment flow) was supplied by a TSI
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model-9307 oil-droplet generator. Both seeders used olive oil as the seeding medium
to produce mean particle sizes of the order of dp � 1 μm; the oil was injected far
upstream from the nozzle exit to ensure sufficient mixing. It is known that tracking
errors are introduced because the particles do not follow strictly the motion of the
fluid (Agüı́ & Jiménez 1987; Melling 1997). Following the analysis of Melling (1997),
the unsteady motion of a sphere of density ρp suspended in a fluid with density ρf

and kinematic viscosity ν can be written as,

dŨp

dt
= −C(Ũp − Ũf ), (2.2)

where the ratio between the particle and fluid densities is large s = ρp/ρf � 1, and Ũp

and Ũf are the instantaneous velocities of the particle and fluid, respectively. Inserting
an expression for the characteristic frequency: C = 18f St−2 s−1 in terms of Stokes
resistance: CD = 24/Rep , and neglecting external forces (centrifugal, gravitational,
etc.), an analytical expression for the ratios between the particle and fluid motions is
determined, 〈

u2
p

〉
〈
u2

f

〉 =

(
1 +

fc

C

)−1

. (2.3)

Here, the Stokes number St = dp(f/ν)0.5 represents a characteristic non-dimensional
frequency of the particle response and fc is the turbulence frequency associated with
the smallest turbulent eddies (to be discussed shortly). According to Melling (1997), an
expression for the Stokes resistance (drag coefficient) should be adjusted on account
of transonic flow conditions, CD = 24/(Rep(1 + Knp)) whereby the Knudsen number
of the particle Knp = l/dp is determined from the mean free path (l = 0.06 μm) of
the gas molecules. In doing so, the expression for the characteristic frequency now
becomes,

C =
18f

(1 + Knp)St2s
, (2.4)

from which (2.3) is re-examined using (2.4). The results of this are shown in figure 2(a)
for different particle diameters and is complementary to the findings of Melling (1997).
As we can see, the disparity between the particle and fluid velocities increases with both
increasing frequency and increasing particle diameter. For the case where dp = 1 μm,
the velocity ratio is illustrated with and without correction for the transonic flow
conditions thus demonstrating the slight correction that is obtained by considering
the particle Knudsen number. The tracking error, expressed as a percentage,

εtrack =

(
1 −

〈
u2

p

〉
〈
u2

f

〉
)

× 100 %, (2.5)

is shown in figure 2(b).
Using an approximation that the turbulent length scale is proportional to � = u3/ε,

the turbulent time scale can be determined, τ = �/u (Tennekes & Lumley 1972), by
the substitution of ε = 0.044U 3

j /D(D/x) from which we obtain (George, Beuther &
Arndt 1984),

τ =
u2

ε
=

(
0.162

0.044

D

Uj

x

D

)
. (2.6)
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Figure 2. (a) Particle to fluid velocity ratio for different particle diameters.
(b) Corresponding tracking error.
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Figure 3. Turbulence frequency based on the time scale of the dissipative structure in a
Mach 0.85 jet.

This uses an assumption that the ratio between the turbulence and the mean flow
is u/Uj ∼ 0.16 which is shown in § 2.6 to be reasonable. The frequency associated
with the dissipative time scale is shown in figure 3 as a function of axial position
over which the measurements are performed. Thus, from figure 3, it is clear that the
estimate for the turbulence frequency never exceeds 4 kHz, and that tracking errors
displayed in figure 2(b) are within 0.9 %. The approximation of (2.6) is not dubious
for the high-Reynolds-number jet since it is known that the dissipation of turbulent
energy is controlled by the energy containing scales of motion.

2.4. Optical considerations

For macro PIV systems, the diffraction limited spot-size (Adrian 1991; Westerweel
1998; Raffel et al. 1998; Meinhart & Wereley 2003) through a single lens with circular
aperture is easily defined,

ds = 2.44(S + 1)λLf #, (2.7)

where S is the average lens magnification and is determined from the calibration to be
0.025. Normally, as we consider the Nyquist sampling criterion, the particle diameter
(and optical arrangement) is chosen such that the pixel dimension is less than a
quarter of the diffraction limited spot-diameter, i.e. ds/dr � 4. However, it has been
shown (Westerweel 1998) that error-free estimates of the particle-image centroid can
be obtained without satisfying the Nyquist sampling rate since the error is zero when
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the cutoff frequency is smaller than 1/dr . In this regard, the minimum pixel resolution
(dr ) should satisfy ds/dr � 2. In the current analysis of the Mach 0.85 jet flow, the ratio
ds/dr is calculated to be around 0.6. While this is slightly under what was suggested
by Westerweel (1998), a slight blurring of the image was incorporated in the PIV
measurements which is known to improve the estimate’s precision for the particle
centroid. Westerweel (1998) has shown that particular care should be taken when
blurring images such that the reduction in tracking error is not replaced by increases
in random error. Consequently the particle image diameter, dτ = (S2d2

p + d2
s )0.5, was

approximated to be 2 × 10−4 m with a particle image displacement of ∼ 4 pixels;
determined from the centre of the jet where the physical displacement of particles is
greatest, and where the turbulence levels are lowest.

2.5. Grid transformation

Since the bulk of the analysis of these data was performed in cylindrical coordinates,
a transformation of the raw PIV data was necessary, that is, from y, z, X → r, θ, x,
where x denotes the streamwise direction in cylindrical coordinates and is shown
in figure 1(b). The transformation comprised a triangle-based linear interpolation
scheme. The radial increment for the cylindrical grid was calculated using �r = (�y +
�z)/2 = 2.12 mm, (4.17 × 10−2D). Likewise, the azimuthal increment was chosen
based on where the spatial transformations (used in subsequent discussions) were
believed to be most sensitive, that is, towards the centre and low-speed sides of the
jet shear layer where the higher modal events are known to exist. This resulted in
an azimuthal increment of ϑ = 4◦ using a radial separation of �r = 4.17 × 10−2D

at r/D ∼ 0.5.
To be certain that the coordinate transformation preserved the continuity relation

(in a global sense) for the measured data, that is ∂ui/∂xi = 0, the spatial derivative of
the axial term was computed from the raw data set (in Cartesian coordinates) and
compared with the derivative of the axial term in the transformed grid (cylindrical
coordinates). Recall that the continuity equation in Cartesian and cylindrical
coordinates is, respectively,

∂uX

∂X = −
(

∂vy

∂y
+

∂wz

∂z

)
, (2.8)

and

∂ux

∂x
= −

(
1

r

∂(rvr )

∂r
+

1

r

∂(wθ )

∂θ

)
. (2.9)

The following comparison is then made based on the sum of the axial derivatives:

κcar (X) =
∑ ∣∣∣∣∂uX

∂X

∣∣∣∣
2

, (2.10)

κcyl(x) =
∑ ∣∣∣∣∂ux

∂x

∣∣∣∣
2

. (2.11)

While X and x effectively represent identical quantities, they are defined separately
in (2.10) and (2.11) to distinguish between the Cartesian (PIV world) and cylindrical
coordinates. The derivative was performed using a sixth-order-accurate compact finite-
difference scheme. A comparison between κcar (X) and κcyl(x) is shown in figure 4
to demonstrate the preservation of the continuity equation after the coordinate
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Figure 4. Comparison of the bulk solution to the continuity equation between the original
( , Cartesian) and transformed (�, cylindrical) grids.
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Figure 5. Sample snap-shot at x/D = 5.0 of the fluctuating streamwise velocity on the (a)
Cartesian and (b) cylindrical grids. (c) Mean streamwise velocity ratio at x/D = 5.0.

transformation. A maximum difference of 23 % was found at x/D = 3.5 which decayed
to 12 %–15 % beyond x/D = 4.0. These discrepancies were found to be the result of
uncorrelated noise in the outer edges of the PIV window (outside of the entrainment
region at this axial position) which became amplified by the numerical derivative.

A sample comparison of the transformed fluctuating velocity for a given snap-shot
in the flow at x/D = 5.0 is shown in figures 5(a) and 5(b), before (original Cartesian
grid) and after (new cylindrical grid) the coordinate transformation, respectively. The
contour levels for these two figures are identical. The mean streamwise velocity ratio
(U/Uj ) at x/D = 5.0 is also shown (figure 5c) demonstrating the mean axisymmetry
of this jet flow.

2.6. Single-point jet statistics

Velocity ratios of the jet’s axial component are shown in figure 6(a) at x/D = 0.0
using the Pitot tube. These are demonstrated for a range of Mach numbers (0.30, 0.60,
0.85) and are complemented with LDA measurements in figure 6(b) at x/D = 0.50.
We can see that the jet exit profile has a top-hat shape and the initial shear-layer
thickness, based on U = 0.95Uj and figure 6(a), was extrapolated from the measured
profiles to be 0.0175D. This is a crude estimate of the shear-layer thickness since the
diameter of the Pitot tube’s opening is approximately 0.0016 m, or twice the estimated
shear-layer thickness. The errors associated with the Pitot tube measurements were
discussed by Tinney et al. (2004) and were of the order of 0.12 % at Mach 0.85.
Axial mean velocity ratios from the PIV measurements are shown in figure 6(c) and
are shown to collapse well using the similarity variable: η = (r − r0.5)/x, where x is
the downstream distance from the nozzle exit plane and r0.5 is the location where
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Figure 6. Axial mean velocity ratios measured with (a) Pitot tube at x/D = 0, (b) Pitot tube
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the mean velocity is 50 % of the jet exit velocity. Turbulence levels from the LDA
measurements at the jet’s centre and x/D = 0.5 were of the order of 1 %. It is
plausible that the noise floor of the instrument was reached and so warrants caution
when interpreting these turbulence levels as they may be lower than this.

The distribution of the mean (U/Uj ) and turbulence (σu/Uj ) velocity ratios along
the centreline are shown in figure 7(a, b) using the current set of data, alongside the
measurements reported from a number of other facilities (table 1). Both profiles from
the current data set comprise an inflection point around x/D = 5.0, whereas the
decay of the mean axial velocity does not reach 95 % of Uj until after x/D = 6.0.
As expected, the Mach 0.3 measurements of Iqbal & Thomas (2007) decay much
earlier than the current Mach 0.85 data, whereas the Mach 0.9 jet measurements
of Arakeri et al. (2003) and Alkislar et al. (2007) occur slightly farther downstream.
The turbulence profiles of the Mach 0.3 study in figure 7(b) also comprise a more
rapid approach into the jet’s transitional regions, when compared to the transonic jets
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Data source Mach number Nozzle diameter Instrument Facility
mm

Current work 0.85 50.8 PIV/LDA SU
Alkislar et al.(2007) 0.9 69.85 PIV QAF
Arakeri et al. (2003) 0.9 22.2 PIV FMRL
Iqbal & Thomas (2007) 0.3 50.6 CTA HSJF
Jung, Gammard & George (2004) 0.07 98 CTA TRL

Table 1. Description of experimental jet measurements reported by others.
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x/D = 3.0 and 8.0. (c) Normal and shear stress terms at x/D = 5.0.

(Mach 0.85 and 0.9), the latter of which is a well-known consequence of the lengthier
potential core.

Second central moments (σi) for all three components of velocity were calculated
from the PIV measurements from which the axial and radial components are shown
in figure 8(a, b). A sample of all normal and shear stress components are shown in
figure 8(c) at x/D = 5.0 where u1u2 is the only significant non-zero shear stress term
(this is only the case when ϑ = 0). The collapse of the mean and turbulence statistics
in figures 6(c) and 8(a, b, c) are consistent with the low-speed jet studies of Bradshaw,
Ferriss & Johnson (1964), Hussain & Clark (1981) and Jung et al. (2004), and the
supersonic jet study of Kerhervé et al. (2004). Note that the collapse of these profiles
continues beyond the end of the potential core, even at x/D = 8.0, as was shown
by Lau et al. (1979) and Jung et al. (2004).

Peak turbulence intensities are shown in figure 9, alongside the measurements
reported by others. In figure 9(a), the axial component, with a peak around 14 %
of the jet exit velocity, demonstrates an acute similarity to the measurements
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reported by Arakeri et al. (2003) and Iqbal & Thomas (2007), the measurements
of Alkislar et al. (2007) being slightly larger in amplitude. Likewise, the radial and
azimuthal turbulence intensities from the current data set exhibit peak energies of the
order of 9 % and 10 %, respectively, with a tendency to increase only slightly with
increasing x. Similar trends are manifest in the radial and azimuthal components when
compared to the reported transonic flow measurements of others. Two-component
LDA measurements performed at Mach 0.85 in the current facility resulted in peak
turbulence levels of σu and σv of 15 % and 11 %, respectively. Thus, a small filtering
effect is evident with the PIV measurements when compared to CTA and LDA
instruments.

As the PIV system allows for a more accurate assessment of the low-speed
entrainment regions of the flow, the local turbulence intensities are calculated at three
axial positions and are shown in figure 10. The profiles demonstrate the significant
increases in turbulence levels in the low-speed regions of the flow; shown here to be
well above 50 % when η(x) > 0.1.
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2.7. Momentum integral

In order to determine whether the experimental data satisfy the equations believed to
govern the flow, and that the data give in fact a reasonable model of an axisymmetric
jet in an infinite environment according to Hussein, Capp & George (1994), then the
velocity moment profiles should satisfy the momentum integral given to the second
order,

Mo = 2π

∫ ∞

0

[U 2 + 〈u2〉 − 1
2
(〈v2〉 + 〈w2〉)]r dr. (2.12)

The percentage variation of (2.12), expressed as,

Mo(x) − Mo(3)

Mo(3)
× 100 (2.13)

is shown in figure 11 using the PIV measurements to demonstrate the variation of
the momentum integral (less than 5 %) throughout the range of positions studied.

Sample snap-shots from the PIV measurements are shown in figure 12 at three axial
stations in the flow, demonstrating the resolution that the PIV system affords and the
coherent large-scale behaviour of the Mach 0.85 jet. At x/D = 3.0 in figure 12(a), we
can see the presence of the irrotational potential core region and evidence of counter-
rotating structures in the shear layer; whereas at x/D = 5.0, the potential core
has shrunk, the consequence of larger events in the shear layer. By x/D = 7.0, the
coherent large-scale motions are seen here to have completely engulfed the potential
core.

2.8. Far-field pressure

Pressure measurements in the acoustic far-field regions of the jet flow at r/D = 75
were performed using an arc array of six G.R.A.S type–40BE 1/4 inch pre-polarized
free-field condenser microphones with matching preamplifiers (see Tinney et al.
2004, for details regarding these acoustic measurements). The arrangement of these
instruments relative to the jet axis are shown in figure 13(a). The power spectral
density, generated from an ensemble average of 375 blocks of 213 samples per block
(sampled at 75 kHz) are shown in figure 13(b) using δf = 9.16 Hz. No corrections
for atmospheric attenuation have been performed, though a 10 % bandwidth moving
filter has been used to smooth the spectra. The non-dimensional frequency is defined
by StD = f DU−1

j . As can be seen in figure 13(b), shallow angles to the jet axis are
dominated by low frequencies (StD = 0.15) whereas angles perpendicular to the flow
(90◦) are dominated by high frequencies (StD = 0.3). The OASPL directivity is also
shown in figure 14 and compares well with the far-field acoustic measurements of a
Mach 0.9 jet by Alkislar et al. (2007). While the principal discussion is focused on
characterizing the low-dimensional behaviour of the near-field velocity, the acoustic
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far-field measurements are here presented to provide a more complete picture of
this Mach 0.85 jet. These far-field measurements will be important in Part 2 where
a prediction of the far-field pressure at these observer points is obtained using a
three-dimensional, three-component, low-dimensional estimate of this jet flow.

3. Two-point statistics: Fourier-azimuthal features of the jet
Because of the nature of planar optical measurements via stereo PIV, all three

components of the velocity field were captured across the (r, θ)-plane of the jet, from
which the spatial distribution of all nine normal and shear stress terms were calculated
as follows,

Rij (r, r ′, x, ϑ) = 〈ui(r, x, θ, t)uj (r ′, x, θ + ϑ, t)〉. (3.1)

Here, ϑ denotes an azimuthal spatial separation of 4◦. See Ukeiley et al. (2007) for a
discussion regarding the spatial characteristics of the two-point correlations calculated
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Figure 14. OASPL directivity at r/D = 75.

from this data set. Since it has been shown that the mean and turbulence statistics
of axisymmetric flows are invariant to the origin in azimuth (Glauser 1987; Citriniti
& George 2000; Tinney et al. 2006b), it is quite natural to obtain Fourier-azimuthal
modes from the azimuthal two-point statistics,

Bij (r, r ′, x; m) =
1

2π

∫ π

−π

Rij (r, r ′, x, ϑ) e−imϑ dϑ. (3.2)

Although it has been suggested that a cosine transformation sufficiently represents
the Fourier-azimuthal features of axisymmetric flows, the assumption has been made
in an effort to reduce the complexity of the experiment (see Glauser 1987; Tinney
et al. 2006b; Iqbal & Thomas 2007), especially when CTA tools are employed
(similar assumptions were made by Moin & Moser (1989) to increase the statistical
sample size for the turbulence in a channel). The instrument that has been selected
for this investigation of the axisymmetric shear layer provides an opportunity to
check this assumption in accordance with the concerns raised by Jung et al. (2004)
and Wänström, George & Meyer (2006). Keeping in mind that the uncertainties
associated with experimental tools will always unavoidably affect our ability to
produce ‘truly’ symmetric statistical quantities, wherever they may exist. Therefore
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Figure 15. The full kernel matrix Rij (r, r ′, ϑ; x) × 103/U 2
cl at x/D = 5.0 with (a) +ϑ and

(b) −ϑ azimuthal separations of 28◦.

it is important to identify the relative magnitude of such asymmetries in order to
determine whether it is a consequence of the instrument’s accuracy, or a natural
artefact of the flow. A sample of the full two-point Reynolds-stress matrix (time
suppressed with zero-time lag) comprising all nine normal and shear terms is
shown in figure 15 from the measurements at x/D = 5.0. These spatial correlations
are constructed using (3.1) with +ϑ (figure 15a) and −ϑ (figure 15b) azimuthal
separations arbitrarily chosen to be 28◦. The abscissa and ordinate axis represent
repeated spatial positions of r/D and r ′/D, respectively, from 0 to 1.5, while a line
has been drawn identifying the axis of symmetry with negative contours outlined with
dashed lines. Close observation shows that all of the normal stresses (uu, vv, ww) are
symmetric about r = r ′ within the statistical uncertainty of the measurements and that
the streamwise-radial shear stress (uv) reflects the transpose of its counterpart (vu)
which is also shown to be invariant to positive and negative separations in azimuth.
Therefore, the following equalities are representative of these particular terms in the
flow:

Ruv(r, r ′, +ϑ) = Rvu(r ′, r, +ϑ) = Ruv(r, r ′, −ϑ) = Rvu(r ′, r, −ϑ), (3.3)

thus justifying the assumptions made by Glauser (1987) who measured the jet’s uv

components of velocity and hence used a symmetry assumption to reduce the number
of azimuthal spatial points by a factor of two.

The azimuthal shear-stress terms (uw, vw, wv, wu), however, demonstrate
drastically different features relative to the former stress terms (uu, vv, ww, uv, vu).
Foremost, these shear-stress terms are clearly non-zero for non-zero azimuthal
separations, unlike the r.m.s. profiles in figure 8(c) where, of course, ϑ = 0◦.
Furthermore, contrary to the observations of uv and vu, the azimuthal shear stresses
are shown to satisfy a clearly unique relation, where i, j = 2, 3 and i �= j ,

Rij (r, r ′, −ϑ) = Rji(r
′, r, ϑ) = −Rji(r

′, r, −ϑ). (3.4)

Whence, the Fourier-azimuthal series transformation of all of the normal stresses
(uu, vv, ww) and the streamwise-radial shear stresses (uv, vu) are shown here to satisfy
the condition for the even cosine transformation, whereas the azimuthal shear stresses
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Figure 16. (a) Real and (b) imaginary components of Fourier-azimuthal mode 3 for the full
kernel matrix at x/D = 5.0.

(uw, vw, wv, wu) satisfy the condition for the odd sine transformation. To further
demonstrate these observations, the full Reynolds-stress matrix in figure 15 has been
transformed using (3.2) from which both the real and imaginary parts of the Fourier-
series coefficients are preserved and are shown in figure 16, using azimuthal mode 3 as
an example. As expected, the real part of the coefficients comprise all of the normal
(uu, vv, ww) and streamwise-radial (uv, vu) shear-stress terms, while the shear-stress
terms associated with the azimuthal velocity component (uw, vw, wv, wu) manifest
the imaginary part of the Fourier-series coefficients. The odd sine transformation is
a consequence of counter-rotating structures in the shear-layer regions of the jet flow
(see figure 12). The jet shear layer is therefore shown here to be a reflection of the
following generalization of the Fourier-azimuthal coefficients for all nine Reynolds-
stress terms,

Bij (r, r ′; −m) = Bji(r
′, r; m) = B∗

ij (r, r ′; m), (3.5)

and is truly Hermitian symmetric.
A further discussion is necessary as we concern ourselves with the spatial topology

of these two-point correlations, and their Fourier-azimuthal features. In view of the
normal stresses, the azimuthal component of velocity is the only component whose
cross-diagonal terms are negative, while the axial and radial components asymptote
towards zero. Thus, the azimuthal component is the only velocity component whose
fluctuations are opposite in direction with respect to the high- and low-speed sides of
the shear layer. This goes to show the high level of axial vorticity that is present in
this transonic, high-Reynolds-number jet flow and is significant to the convergence
of the POD eigenvalues as will be discussed in § 4.

The complex modulus of the Fourier-azimuthal transformation of all three normal
stress components of the kernel (Bii) are shown as surface contours in figure 17 to
provide a basic understanding of the radial distributions of the azimuthal modal
energy of the axisymmetric jet. In each plot, the distributions of the azimuthal modes
are normalized by the energy of the half spectrum for each individual stress term
and each axial position in the flow. The axial positions are chosen to illustrate the
spatial distribution of these modes before (3.0D), during (5.0D) and after (7.0D)
the collapse of the potential core. The decrement for each contour line is 0.2, and the
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Figure 17. Fourier-azimuthal modal distribution of the (a) axial, (b) radial and (c) azimuthal
components of velocity. (i) x/D = 3, (ii) 5, (iii) 7.

radial distributions of the azimuthal modes are plotted with the similarity variable
η(x). Prompted by the discussion from Glauser (1987) and Glauser & George (1992),
a study of the sensitivity of these solutions to the azimuthal grid spacing (4◦) was
investigated by Tinney et al. (2005) to show that there were negligible spatial aliasing
effects. It can be seen in figure 17(a) that the axial component of velocity is dominated
by m = 4 along the centre of the jet’s mixing layer at x/D = 3.0 and falls to Fourier-
azimuthal mode 2 at x/D = 7.0 with its peak occurring along the high-speed side
of the jet’s shear layer. Where the potential core regions of the flow are concerned,
the streamwise component is dominated by m = 0 at all axial positions, whereas
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the radial and azimuthal components comprise the helical m = 1 mode (figure 17).
Thus the radial and azimuthal component velocities are characterized by more lower-
dimensional-flow events, with respect to the axial component. Overall, it is clear that
the lower-order modes dominate the potential core and high-speed sides of the jet’s
mixing layer, whereas the higher-order modes dominate the low-speed side of the jet’s
mixing layer, in agreement with the observations of Glauser (1987) and Ukeiley et al.
(1999).

Likewise, the radial distribution of the azimuthal modes of the shear stress terms at
x/D = 5.0 are shown in figure 18. The uv shear-stress terms in figure 18(a) are shown
to assimilate similar features of the axial and radial normal stresses in figure 17(a, b).
However, the azimuthal modes of the azimuthal shear stress terms uw and vw in
figure 18(b, c), reflect different features to the former. These shear-stress terms show
how the modal behaviour on the low-speed side of the shear layer η(x) > 0 is a close
reflection of the azimuthal modes on the high-speed side at η(x) < 0.

4. Proper orthogonal decomposition
To obtain a low-dimensional representation of the turbulent jet’s most energetic

flow features, Lumley’s (1967) proper orthogonal decomposition (POD) is used to
decompose the inhomogeneous radial direction of the flow measurements. While
POD reduces to a harmonic decomposition for homogenous, periodic or stationary
systems, Fourier methods are much more computationally efficient and so have been
used here to treat the azimuthal field prior to the analysis on the radial field using
POD. The application of this technique to the current study involving the Mach
0.85 jet comprised both scalar and vector forms of the POD, of which the form of
the latter is used to highlight its mathematical features. The general mathematical
properties of the POD are described elsewhere (Glauser 1987; Aubry et al. 1988;
Berkooz et al. 1993; Citriniti & George 2000) as a means by which to decompose
(in an unbiased manner) inhomogeneous fields comprising spatially correlated events.
In short, the POD, derived via the calculus of variations, seeks to maximize the
mean square projection of a candidate event onto a field of vectors. The kernel
used in the maximization is complex Hermitian, and the problem results in a linear
integral equation of the Fredholm type (4.1) following the Hilbert–Schmidt theory
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for symmetric integral kernels:∫
R

Bij (r, r ′, x; m)Φ (n)
j (r ′, x; m)r ′dr ′ = Λ(n)(x; m)Φ (n)

i (r, x; m). (4.1)

Here the kernel Bij (r, r ′, x; m) is the ensemble-averaged Fourier-transformed (ϑ → m)
two-point velocity cross-correlation tensor from (3.2) and r ′ is the Jacobian for the
cylindrical coordinate system and is inside the integral. The solution to the POD
produces an ordered sequence of eigenvalues (λ(n) � λ(n+1)), whose eigenfunctions
represent more fluctuating energy per mode than any other linear expansion technique.
Although an infinite number of solutions are known to exist, they are limited
in practice to the number of points (N) measured multiplied by the number of
components (c) used to construct the kernel. Since the eigenvalues and eigenfunctions
are properties of the kernel, they can be used to reconstruct it as follows:

B(k)
ij (r, r ′, x; m) =

k∑
n=1

λ(n)(x; m)Φ (n)
i (r, x; m)Φ (n)∗

j (r ′, x; m), (4.2)

where B(k)
ij (r, r ′, x; m) = Bij (r, r ′, x; m) for k = cN , and (∗) denotes the complex

conjugate. Likewise, an infinite number of eigenfunctions can be used to reconstruct
the original instantaneous velocity,

ui(r, x, t; m) =

k∑
n=1

a(n)(x, t; m)Φ (n)
i (r, x; m), (4.3)

using random and uncorrelated expansion coefficients,

a(n)(x, t; m) =

∫
R

ui(r, x, t; m)Φ (n)∗
i (r, x; m)r dr, (4.4)

whose mean square energies are the eigenvalues themselves: Λ(n) = 〈a(n)a(q)〉δ(n,q).
A numerical approximation of the integral is performed using a quadrature function

and is achieved by first separating r ′ into r ′1/2 × r ′1/2, and then multiplying (4.1) by
r1/2. The kernel is then redefined as r1/2Bij (r, r ′, x; m)r ′1/2 from which the empirical
basis functions then become Φ (n)(r, x; m)r1/2. The results of this operation ensure that
the kernel is Hermitian symmetric without affecting the final solution, and has been
shown by Glauser (1987) and Citriniti & George (2000) to simplify the computation.

Where the scalar form of the POD is concerned, its implementation in the current
study comprised individual decompositions of the axial–, radial– and azimuthal–
normal stresses and is given by the solution to the following integral eigenvalue
problem, ∫

R

Bii(r, r
′, x; m)φ(n)

i (r ′, x; m)r ′dr ′ = λ
(n)
i (x; m)φ(n)

i (r, x; m). (4.5)

Since the scalar form of the technique contains all of the same mathematical features
as the vector form, it is unnecessary to provide a complete description of both.
However, it is provided in (4.5) to form a nomenclature from which the results from
the scalar and vector methods can be distinguished in the subsequent discussion. Thus,
where appropriate, we will resort to upper and lower case lettering, e.g. (Φ, Λ) versus
(φ, λ), for those terms that relate to the vector and scalar techniques, respectively.

Although it is customary to use the snap-shot methods of Sirovich (1987) when data
sets comprising high spatial resolution are employed – such as those acquired with PIV
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Component n = 1 n = 2 n = 3 n = 4 n = 5

ξ
(n)
u,full 46.5 19.8 (66.3) 10.8 (77.1) 6.5 (83.6) 4.2 (87.8)

ξ
(n)
v,full 47.0 19.8 (66.8) 10.6 (77.4) 6.4 (83.8) 4.1 (87.9)

ξ
(n)
w,full 31.4 26.3 (57.7) 13.2 (70.9) 8.9 (79.8) 5.4 (85.2)

Ξ
(n)
full 33.5 15.5 (49.0) 8.2 (57.2) 5.2 (62.4) 4.6 (67.0)

Table 2. Percentage contribution of energy in the first five POD modes (averaged in x)
including their cumulative convergence in parentheses.

techniques (see Caraballo et al. 2003) or in the numerical modelling communities (see
Noack, Papas & Monkewitz 2005) – the purpose of treating the azimuthal and radial
directions separately is to take advantage of the flow’s azimuthal symmetries. Thus,
for the remainder of the discussion, we will treat the POD modes as a mean square
optimization of the radial distribution of the Fourier-azimuthal modes.

4.1. Energy convergence and sensitivity

Since the POD is a decomposition of energy, the cumulative energy is equal to the
total resolved turbulent kinetic energy of the flow (Lumley 1967). This is calculated
at each axial station as follows:

ζi(x) =
∑

n

∑
m

λ
(n)
i (x; m), (4.6)

Π(x) =
∑

n

∑
m

Λ(n)(x; m). (4.7)

It is typical to illustrate the convergence of the POD eigenfunctions in order to
determine how the energy-containing events are ranked; calculated here at each axial
position by the following energy normalization,

ξ
(n)
i,full (x) =

∑
m

λ
(n)
i (x; m)

ζi(x)
, (4.8)

Ξ
(n)
full (x) =

∑
m

Λ(n)(x; m)

Π(x)
. (4.9)

The subscript ‘full ’ in (4.8) and (4.9) has been inserted and refers to the solutions
obtained using the fully resolved measurement grid. The significance of this will
be addressed in the subsequent discussion pertaining to the sensitivity of the POD
eigenvalues to the resolution of the measurement grid. In table 2, the convergence of
the first five POD modes are itemized and were averaged in x since the variation in
the normalized energy of the first five POD modes was found to be within 5 % of the
averaged normalized values with no observable trends in x. Where the scalar POD
eigenvalues are concerned, the axial and radial components exhibit rapid convergence
with approximately 77 % of the total energy being resolved in the first three POD
modes (8 % of the total number of POD modes). To the contrary, the first two
POD eigenvalues of the azimuthal component are shown to possess similar energy
levels: 31 % and 26 %, respectively. This pairing-like phenomena is a consequence of
the cross-diagonal characteristic of the azimuthal normal stress term discussed in § 3
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(axial vorticity) which is shown here to produce a nearly harmonic set of POD basis
(POD mode pairs being representative of positive and negative wavenumbers; see
Tinney & Jordan 2008).

It is known from Glauser & George (1992) that the spatial resolution of the
measurement grid can adversely influence the convergence of the eigenvalues. To
demonstrate this effect, a sensitivity study is performed to analyse the convergence
of the POD eigenvalues itemized in table 2. In figure 19(a), Eulerian integral length
scales (Li) are shown for each component of the velocity field and are calculated as
follows:

Li(x) =

∫ r ′

r

Rii(r, r
′, x)

σi(r, x)σi(r ′, x)
dr ′, (4.10)

where Li(x) is taken as the maximum value for a given axial location in the flow and
was found to reside towards the low-speed regions of the jet shear layer, although
similar to the values found along the lip-line at r/D = 0.5. The integral length scales are
dependent on the component of velocity selected and on the axial position measured.
Ratios between the integral length scales and the shear layer’s width (δ) are presented
in figure 19(b); the shear-layer width being defined as the region between η(x) = −0.1
and 0.17, following the findings reported in figure 8(c) and is a sufficient definition
for the purposes of this analysis. As the growth of δ changes after the collapse of the
potential core, the decay in δ/Li after x/D ∼ 6 is expected. Glauser & George (1992)
estimated δ/Lu to be between 3 and 5 for the axial velocity and is within the range
of numbers reported here.

The sensitivity of the energy in the POD eigenvalues to the discretization of the
integral length scale is shown in figure 20 for the scalar POD solutions (4.8). The
solutions obtained using the full measurement grid (ξ (n)

i,full (x)) have been subtracted to
determine the amount of bias in the solutions obtained with the under-resolved grid;
the dependence on the axial position being preserved here since the 5 % variation
in the fully converged solutions is enough to prevent any discernible trends from
collapsing. Not surprisingly, a sensitivity to the discretization of the shear layer is
observed where the eigenvalues are shown to converge to within 1 % of the expected
value when �r/Li < 0.3; the radial component of velocity appearing to be more
sensitive for �r/Lv > 0.3. As POD-based norms comprise finite energy, the over-
prediction of energy in the first POD eigenvalue can result in an under-prediction of
energy in higher-mode-number eigenvalues. Evidence of this is shown in figure 20(d )
where the second POD eigenvalue tends towards an under-prediction in energy as
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the spatial discretization becomes coarser (as �r exceeds the integral length scale).
Similar trends were observed for the vector solutions.

The premise that the eigenvalue energy is proportional to δ/Li is reviewed here
and is found to be an important criterion in the axisymmetric jet, and may be equally
suitable for other flows. Since an a priori estimate of δ may be more readily available,
as opposed to Li , the eigenvalues were found to converge to within 1 % of the
expected value when �r/δ < 0.1. These trends support the assertions of Glauser &
George (1992) that the number of realizations N should be of the order of 1+2δ/Li .
For the remainder of this discussion, only those solutions obtained using the fully
resolved measurement grid will be used.

4.2. Fourier-azimuthal eigenspectra

The normalized Fourier-azimuthal mode eigenspectra are determined from the scalar
and vector solutions as follows,

α
(n)
i (x; m) =

λ
(n)
i (x; m)

ζi(x)
, (4.11)

β (n)(x; m) =
Λ(n)(x; m)

Π(x)
. (4.12)

The distribution of Fourier-azimuthal energy from the scalar decomposition of the
axial velocity component is shown in figure 21 using (4.11) and the first three POD
modes. As expected, the axial component at x/D = 3.0 is rich in higher azimuthal
mode number activity which evolves gradually towards lower mode number activity
in the transition and far-field regions of the jet. Unless otherwise noted, we will
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confine the remainder of this discussion to the azimuthal mode number eigenspectra
of the first POD eigenvalue.

In figures 22 to 24, the solutions from all three scalar implementations of the POD
are shown alongside what is available in the literature; primarily confined to the
work of Iqbal & Thomas (2007) and Jung et al. (2004). As the principal variation
between these three studies comprises differences in the initial conditions (shear-layer
thickness) or Mach-number-related effects, the axial position (xL) where the centreline
velocity reduces to 95 % of the jet exit velocity (see figure 7a) is used to normalize
each axial position where the eigenspectra are computed; Reynolds-number effects
should be negligible following the observations of Jung et al. (2004). Furthermore, as
a coarse azimuthal grid can adversely effect the azimuthal eigenspectra (see Tinney,
Glauser & Ukeiley 2005), both solutions from Iqbal & Thomas (2007) are presented,
that is, for ϑ = 15◦ and 7.5◦.

The axial component eigenspectra are shown in figure 22 for the first POD mode
and are found to agree reasonably well considering the range of Mach numbers (0.07



Low-dimensional characteristics of a transonic jet. Part 1 131

0 2 4 6 8 10 12
0

5

10

15

(a) (b)

0 2 4 6 8 10 12
0

5

10

15

α
v(1

) (m
),

(%
)

0 2 4 6
m m

8 10 12
0

5

10

15

(c) (d)

0 2 4 6 8 10 12
0

5

10

15

α
v(1

) (m
),

(%
)

SU
HSJF(Δθ = 15°)

HSJF(Δθ = 7.5°)

Figure 23. Azimuthal eigenspectra of the first POD mode from the scalar decomposition of
the radial component. (a) x/xL = 0.6, (b) 0.8, (c) 1.0, (d) 1.2.

0 2 4 6 8 10 12
0

5

10

15

20
(a)

0 2 4 6 8 10 12
0

5

10

15

20
(b)

α
w(n

) (m
),

(%
)

0 2 4 6 8 10 12
0

5

10

15

20
(c)

0 2 4 6 8 10 12
0

5

10

15

20
(d )

α
w(n

) (m
),

(%
)

SU(n = 1)

HSJF(n = 1,Δθ = 15°)

HSJF(n = 1,Δθ = 7.5°)

SU(n = 1 + n = 2)

m m

Figure 24. Azimuthal eigenspectra of the first POD mode from the scalar decomposition of
the azimuthal component α(1)

w (m). (a) x/xL = 0.6; (b) 0.8; (c) 1.0; (d) 1.2. Also included is the
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to 0.85) that are being compared. Particularly striking is the rapid decay of the zero
mode structure of Jung et al. (2004). Similar observations are shown in the current
data set (figure 21a), but quickly become non-existent for the range of positions
in figure 22. This appeared not to be the case for the Mach 0.30 measurements
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of Iqbal & Thomas (2007). The axial component eigenspectra are otherwise quite
complementary and are our first glimpse of the similarities in the structure between
the low- and high-Mach-number subsonic jets.

Turning our attention to the radial component eigenspectra in figure 23, the
sensitivity of the solutions from Iqbal & Thomas (2007) to the discretization of the
azimuthal grid is much more important here; the smaller grid spacing (7.5◦) being
more complementary to the eigenspectra of the current Mach 0.85 data (4◦). Where
the dominant azimuthal mode number for the radial component’s eigenspectra is
concerned, a large discrepancy is found between the Mach 0.30 and Mach 0.85 data
sets. The Mach 0.3 measurements of Iqbal & Thomas (2007) suggest that mode zero is
dominant, whereas the current Mach 0.85 measurements indicate that it is the helical
mode. A scalar decomposition of the radial component of velocity using the Mach
0.30 and 0.60 jet data of Ukeiley et al. (1999) showed that, for both Mach numbers,
the helical mode was the dominant azimuthal mode through this region of the jet
and is what we find here in the higher-Mach-number study.

Where the azimuthal component eigenspectra are concerned (figure 24), a deficiency
in energy is clearly manifest in the first POD mode. Since the first two POD bases
from the scalar decomposition of the azimuthal component have been found to
turn towards harmonic functions, the first POD mode alone is not sufficient for
representing the underlying large-scale characteristics of this component of the flow.
However, the summation of the first two POD modes is sufficient and is shown in
figure 24 to compare reasonably well (in energy) to the eigenspectra of Iqbal &
Thomas (2007). The use of CTA wires to measure the fluctuations in the low-speed
sides of the shear layer, where turbulence levels have been shown in figure 10 to go
well beyond 50 % of the local mean value, results in irreversible rectifications of the
signal. The consequence of this is an inability to properly capture the axial vorticity,
which has been shown here from PIV surveys to be an important manifestation of
the jet shear layer. It is conjectured that this is the leading cause of the disparities in
energy between the solutions of Iqbal & Thomas (2007) and the current set of PIV
measurements, and the lack of any mode number pairing in the solutions of Iqbal &
Thomas (2007) for the scalar decomposition of the azimuthal component of velocity.
Nevertheless, a consistency with both the current data set and the solutions of Iqbal &
Thomas (2007) is observed in that the radial and azimuthal component eigenspectra
are qualitatively similar (dominated by low azimuthal mode number energy) and have
different eigenspectra shapes with respect to the axial component of velocity (rich in
higher azimuthal mode number energy).

In view of the results from the vector decomposition in figure 25(a , b), the Fourier-
azimuthal eigenspectra assimilate many of the features of the eigenspectra from
the scalar decomposition of the axial component, but with less energy in the
higher azimuthal modes. This is an effect of the much more lower-dimensional
characteristics of the radial and azimuthal velocity components which have been
shown here to suppress the energy in the higher Fourier-azimuthal modes when the
full vector characteristics of the jet turbulence are considered. Thus with the vector
decomposition, the azimuthal eigenspectra manifest an energy peak in mode 5 at
x/D = 3.0 followed by a shift towards mode 2 by x/D = 8.0. The shape of the
Fourier-azimuthal eigenspectra are more clearly represented when the first two most
energetic POD eigenvalues are combined (figure 25b).

An attempt to reproduce the solutions of Iqbal & Thomas (2007) are shown
in figure 25(a) by resampling the current high spatial-resolution Mach 0.85 PIV
data onto a coarser grid (�θ = 15◦, seven points in r where �r/D = 0.126). The
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Figure 25. (a) Azimuthal eigenspectra of the first POD mode from the vector decomposition,
β (1)(x; m). (b) Summation of the first two POD modes, β (1+2)(x; m). (i) x/xL = 0.6; (ii) 0.8;
(iii) 1.0; (iv) 1.2.

azimuthal eigenspectra of the first POD mode continues to resemble the current
high-resolution trend, though with energy levels more comparable to the eigenspectra
of Iqbal & Thomas (2007), especially in the downstream regions of the flow. This is
counter-intuitive to what was found with the grid-sensitivity study. We would expect
that the grossest over-estimates would occur in the near-nozzle region and decay
with increasing axial position (for a fixed grid, both �r/Li and �r/δ decrease as
x increases). However, an additional adverse effect of the coarse measurement grid
chosen by Iqbal & Thomas (2007) is its failure to capture the entire width of the shear
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layer in the downstream regions of the flow; and so, any anticipated over-estimates
in energy based on the findings reported in figure 20 are counteracted by the spatial
confinement of the measurement grid to only a fraction of the shear layer, which is
what we observe here when an attempt is made to reproduce the solutions of Iqbal
& Thomas (2007). On account of the fidelity of the energy in the POD eigenvalues
to the spatial grid’s discretization, it is evident that the structure of the turbulent
jet behaves similarly over a large range of Reynolds numbers and Mach numbers
(subsonic).

Iqbal & Thomas (2007) have shown how the full three-dimensional jet structure
stabilizes to a Fourier-azimuthal mode 1 in the transition region of the flow at
x/D = 12.0. The subtle delay in the modal convergence to m = 1 at Mach 0.85 and
x/D = 8.0 when compared to the lower-Mach-number jet is here attributed to the
lengthening of the potential core at the much higher speeds (see figure 7). Although
the dominance of the m = 1 mode in the far-field regions is shown to be small in
comparison to the next higher mode, m = 2, it is nonetheless expected to occur here
as well.

Scaling the normalized eigenspectra (4.12) of the Fourier-azimuthal modes with
shear-layer variables is shown here in figure 26 to collapse the azimuthal eigenspectra
of the first two POD modes from the vector decomposition. This was shown similarly
by Taylor (2001) for the Mach 0.3 and 0.6 jet, and by Jung et al. (2004) for a range
of lower-Reynolds-number jet flows.

4.3. Low-order Fourier-azimuthal reconstructions of the kernel

For completeness of discussion, the kernel is reconstructed using the first (n = 1) POD
mode and the results from the scalar and vector decomposition to illustrate the spatial
evolution of the Fourier-azimuthal modes of the most energetic radial flow structure.
The results are computed using the following expression,

B(k)
ii (r, r ′, x; m) =

k∑
n=1

λ(n)(x; m)φ(n)
i (r, x; m)φ(n)

i (r ′, x; m), (4.13)

and are compared with reconstructions from the solution to the vector decomposition
using (4.2). This is shown in figure 27 raised to the half power and normalized by the
jet exit velocity. Like the Fourier-azimuthal modal distribution shown in figure 17,
the radial distribution of modal energy reflects a spatial preference of the lower
Fourier-azimuthal modes to the potential core regions of the flow, whereas the higher
Fourier-azimuthal modes show the characteristics of the shear-layer and entrainment
regions of the jet flow. Excellent agreement between the two results shows how the
individual component features are preserved using the vector decomposition.
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Figure 27. Eigenvector reconstructions of the axial and radial components of the kernel
using POD mode 1 and Fourier-azimuthal modes 1 and 5 from the (a) scalar and (b) vector
decompositions. (i) u, m = 1; (ii) 5; (iii) v, m = 1; (iv) 5.

The principal benefit of the vector POD is the ability to produce an optimal basis
set which preserves orthogonality between both the POD modes and the different
components of the velocity field that are included in the decomposition. Furthermore,
the vector decomposition offers the opportunity of integrating shear stress terms into
the basis set, those which are important for turbulence transport, vortex stretching
and turbulence production, a necessary list of items that are essential for producing an
accurate and stable low-order dynamical system model. There are, however, certain
qualities about the scalar form of the technique which will be discussed in Part 2
as it pertains to a coupling of the POD basis from a decomposition of the velocity
field, with a basis that is representative of the low-order features of the pressure field
within the hydrodynamic periphery of the jet flow.

5. Snap-shots of the low-ordered flow events
Low-ordered reconstructions of the original instantaneous realizations along a slice

in the (r, θ)-plane of the jet are performed using the most energetic modes from the
vector POD. These are displayed at three axial positions in the flow (x/D = 3.0, 5.0
and 7.0) in figures 28 and 29 to demonstrate typical features of the most energetic
flow events in physical space. In figure 28 the original snap-shots from the PIV
system are shown for each velocity component, complemented by its corresponding



136 C. E. Tinney, M. N. Glauser and L. S. Ukeiley

(a)

–80

–40

0

40

80

–1 0 1

–1

0

1

–1 0 1

–1

0

1

–1 0 1

–1

0

1

(b)

–1 0

y/D y/D y/D

1

–1

0

1

–1 0 1

–1

0

1

–1 0 1

–1

0

1

–40

–20

0

20

40

–40

–20

0

20

–40

–20

0

20

40

–20

–10

0

10

–20

–10

0

10

z
D

z
D

Figure 28. (a) PIV snap-shots of the axial, radial and azimuthal (left to right, respectively)
components of the velocity field at x/D = 3.0, and (b) the corresponding low-ordered
reconstruction using Fourier-azimuthal modes m = 0 to 6 and POD modes n = 1 to 3.

low-order (n = 1 to 3 and m = 0 to 6) reconstruction. In particular, the original
and reconstructed snap-shot of the axial velocity at x/D = 3.0 illustrates a Fourier-
azimuthal mode 5-like structure positioned along the centre of the shear layer.
Likewise, radial and azimuthal components are shown to comprise similar modal
behaviours.

Moving downstream to x/D = 5.0 and 7.0 in figure 29, three statistically independent
time steps per position are shown. In this figure, the vector maps identify regions
of axial vorticity (v, w components), while a grey-scale contour shows the topology
of the axial velocity fluctuations (dark: positive, light: negative). Each of the six
illustrations comprise velocity components that are phase aligned in time to provide
a frozen picture of the full turbulent structures along a slice in the (r, θ)-plane of
the jet. At x/D = 5.0, the higher Fourier modal events are still present along with
a series of counter-rotating events, positioned along the centre of the jet’s mixing
layer near y/D and z/D = 0.5. By x/D = 7.0, the prominent energy-containing events
of the flow cover a broader region in space, when compared to the flow topologies
at x/D = 3.0 and 5.0. These events at x/D = 7.0 appear also to be less organized
in their spatial distribution, as would be expected since the potential core has now
collapsed. We can point to the regions of the flow where portions of the fluid mass
are either entrained or ejected from the potential core. For example, the entrainment
regions in the flow, located between two counter-rotating vortices, are shown (in
all illustrations) to manifest negative streamwise fluctuations, thus characterizing the
entrainment of a slower moving (relative to the local mean) mass of fluid into the
jet core. Similar to the entrainment behaviour, the regions of fluid mass ejection,
also identified by counter-rotating vortices (but opposite in sign), comprise positive
streamwise fluctuations. Thus, the masses of fluid that are either entrained or ejected
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Figure 29. Low-order reconstructions at (a) x/D = 5 and (b) x/D = 7 from three statistically
independent time steps (per position) using Fourier-azimuthal modes m = 0 to 6 and POD
modes n = 1 to 3. The axial velocity is identified by grey-scale contours, while radial and
azimuthal components (v,w) are represented in vector format.

manifest slow and fast-moving motions, respectively (see Hussain & Clark 1981, for
a similar discussion using flow-visualization techniques).

An overall objective of employing low-order modelling techniques to turbulent flows
is to separate the more energetic features of the flow field from the underlying random
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motions in order to develop an intuition for the mechanisms responsible for most
of the dynamical characteristics that govern the behaviour of these complex systems.
Since the measurement techniques employed in this study compromised temporal
resolution for spatial accuracy, the time dependences of these dynamical events are
not available without having to perform additional work. To this end, the presentation
and discussion of the measurements that have been presented here, form the basis for
a concerted undertaking focused on reconstructing a time-dependent estimate of the
most energetic turbulent features (from a turbulent kinetic energy point of view) of
the jet using surveys of the near-field pressure via a spectral linear stochastic estimate
procedure described by Ewing & Citriniti (1997) and Tinney et al. (2006a). From this
low-dimensional estimate (presented in Part 2), the three-dimensional, time-resolved
acoustic source terms are computed using all nine components of the Lamb vector
and are propagated to several far-field observer positions using the analytical solution
to Lighthill’s (1952) formulation.

6. Summary
A Mach 0.85 flow exiting from a 50.8 mm axisymmetric converging nozzle

into an anechoic chamber at ambient pressure and temperature was investigated
experimentally using Pitot-tube, LDA and PIV instruments. Pitot-tube and LDA
surveys of the axial velocity at the jet exit demonstrated a top-hat profile with an
initial shear-layer thickness of 0.0175D, and turbulence levels at x/D = 0.5 of the
order of 1 %. The three-dimensional flow was surveyed along the (r, θ)-plane of the
jet using a three-component PIV system between x/D = 3.0 and 8.0 (�x = 0.25D).
Spatial correlations were computed from the PIV measurements from which all nine
normal and shear stress terms Rij (r, r ′, ϑ; x) were determined at each axial station and
across the entire (r, θ) measurement plane. The Fourier-azimuthal decomposition of
all normal stresses showed once again that the potential core and high-speed sides of
the mixing layer are characterized by the low Fourier-mode number events 1 and 2,
whereas the low-speed side of the shear layer is governed by higher azimuthal
mode events. In general, the radial and azimuthal components were much more
low-dimensional than the axial component of the velocity field.

A proper orthogonal decomposition was performed using both scalar and vector
forms of the technique. A grid-sensitivity study showed how the POD eigenvalues
safely converge to within 1 % of their expected values when the ratio between the
discretization of the measurement grid and the integral length scale is less than 0.3.
On account of these disparities, the findings reported here agree reasonably well
with the scalar decompositions reported by others at different Reynolds and Mach
numbers, thus providing evidence that the structure of the turbulent jet behaves
independently of these factors (under subsonic conditions and when the Reynolds
number is sufficiently high).

Low-order reconstructions of the velocity field using only the most energetic
turbulent flow events were shown alongside the original snap-shots from the PIV
system at x/D = 3.0, 5.0 and 7.0. The reconstructions depict slow fluid entrainment
into the jet’s core and fast fluid ejection into the ambient field. Since the analysis
comprised stationary measurements of statistically independent flow realizations in
the (r, θ)-plane via PIV techniques, the dynamical characteristics of these events
are unavailable which is important for understanding the mechanism by which the
turbulent kinetic energy of the flow is converted into sound energy. Thus, in Part 2,
an effort is made using stochastic estimation methods to produce time-varying
POD coefficients which are capable of making a three-dimensional, three-component



Low-dimensional characteristics of a transonic jet. Part 1 139

time-resolved estimate of the low-order flow events that manifest the near-field and
early transition regions of this Mach 0.85 jet flow.
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